2012年5月3日 星期四

石墨烯技術 將取代半導體

2010年諾貝爾物理獎介紹-石墨烯graphene「完美二維系統」
東海大學物理系研究生林志遠、楊贊樺、簡世森/國立彰化師範大學洪連輝教授責任編輯

1.jpg

 2010的諾貝爾物理獎頒給了兩位英國曼徹斯特大學的物理學家,Andre Geim和Konstantin Novoselov。他們獲獎的原因,除了成功地製造了「傳說中的」二維材料,也為實驗手法開創了一種全新的思維,奈米級的樣品竟然可以用再平凡不過的3M膠帶備製!他們不僅實現了理論中完美的二維系統,也帶出這個系統中各種獨特又迷人的物性。他們第一篇相關的論文在2004年發表,到去年得獎,也僅短短七年的時間。而相關的論文數目,也在這七年之間呈現指數型的成長[圖2.],可見石墨烯在科學界受到重視的程度。
 2.jpg

石墨烯是蜂窩狀的單層碳結構,如圖3 所示。早在1947年,P. R. Wallance編寫的固態物理教科書中,已經出現石墨烯的理論計算,但是單層原子的二維結構會因為熱擾動變得很不穩定,學界甚至懷疑它無法單獨穩定存在。不過仍有科學家嘗試製造它,只是成果都不如預期。直到2004年,Geim團隊辦到了!他們使用3M膠帶,剝離出單獨且穩定的石墨烯,並放在有特定厚度氧化矽的基板上,利用光學干涉的方式辨識出單層的石墨烯。令學界感到驚訝的是,這個奈米級的產物,竟然在一點都不「奈米」的方法中誕生了。
3.jpg

圖4. 為原子力顯微鏡所取得的石墨烯表面形貌圖。單層的石墨烯其原子層厚度約為0.35 nm。但由於在大氣下水膜的影響,所測得的高度都略高於此值。利用機械剝削法的方式雖然可以得到乾淨純的石墨烯片,但是缺點為石墨烯的大小都約為10~100 σm左右。石墨烯的製造方式除了利用剝削法外,其它的可製造大面積的薄碳膜製方式陸續也被研究。例如將碳化矽(SiC) 加熱到1300℃退火時,此時碳將稀出於基板表面形成一薄碳膜,或是利用化學氣相沉積法(CVD),將甲烷(CH4)於氫氣氣份下於溫度約1000℃以上裂解沉積於銅或是鎳的表面。目前使用CVD方式已經可成長面板尺寸的大小的碳薄膜,提高了其未來應用性。   

石墨烯的電子結構可以看成六對互相倒立的角錐如圖5。在沒有任何摻雜的情況下,費米能階位在導帶與價帶間連接的點,在這個點上的電子有效質量等於零,速度是光速的300分之1。1984年,G. W. Semenoff用Dirac方程式描述佔據這個態的電子,也因此以這個點被稱為Dirac點。沒有質量的費米子在垂直入射電位障時,可以完全穿透(Klein tunneling)。值得注意的是,在沒有載子傳輸的情況下,石墨烯仍有一個最小的導電率σ=e2/h。石墨烯的電阻值會隨著外加垂值電場的變化而改變,稱為ambipolar field effect。例如圖6,利用改變閘極電壓來調控外加垂直電場的大小,可以發現在某個閘極電壓值時石墨烯有一最大的電阻值,當改變閘極電壓大於此值時石墨烯為電子參雜,當小於此值時為電洞參雜。所以可用閘極電壓的來控制石墨烯為N型或是P 型半導體,甚至可將它的能隙打開。而量子霍爾效應也可以在它完美的二維系統中展現,甚至可以在室溫中觀察到量子化的霍爾電阻與SdH震盪。
4.jpg

石墨烯其載子遷移率在理論上因受到聲學聲子的限制在載子密度n=10-12cm-2下其載子遷移率為μ=200,000cm2V-1S-1。其層數較多的石墨稀其塊材導電度約為0.96×10-6 Ω-1cm-1稍微大過於銅的導電度0.6 x106 Ω-1cm-1。在熱導方面也具有良好熱傳導能力約為5000Wm-1K-1,大約高過於在室溫下銅(401 Wm-1K-1)的10倍。石墨烯具有良好的透光特性,單層的石墨稀對於可見光波長的吸收大約只有2.3%。
5.jpg

因石墨稀它是個薄膜、機械結構又強壯、光穿透度又高並且又是個可撓式導體。且導電度可透過化學參雜或是電場控制的方式來調控,並且其載子遷移率也相當大。在未來可取代現有的Indium-Tin-Oxide (ITO) 等透明導電薄膜,可應用於太陽能,顯示器面板上。並且在應用於氣體偵測器上也有相當的潛力。是故石墨烯的發現除了帶來了在二維材料的物理特性研究上有更進一步的突破,並可作為未來光電等元件新的應用方向,所以其發現對人類的生活與科學有很大的貢獻。

參考資料:
1.        http://nobelprize.org/nobel_prizes/physics/laureates/2010/.
2.        A. H. C. Neto, Materialstoday 13, 1 (2010).
3.        http://en.wikipedia.org/wiki/Graphene.
4.        K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, PNAS 30, 10451 (2005).
5.        “Scientific Background on the Nobel Prize in physics 2010,” The Royal Swedish academy of sciences, 5 October (2010).
6.        K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

全球高科技業矚目的石墨烯技術,台灣有重大突破,逢甲大學纖維與復合材料系教授蔡宜壽研究團隊,已成功研發可大量製造單層石墨烯片的方法,成本只有目前市售行情的千分之一,未來商機上看數千億元。

蔡宜壽說,他能讓石墨烯工業化量產的關鍵,是找到了特殊的物理方法。石墨烯是碳的新形式材料,強度、導電性、散熱性能佳,是取代半導體晶片的絕佳材料,目前IBM、英特爾、三星等大廠都斥資投資在這個微小薄片。

目前全世界製作1公斤石磨烯的成本約需11萬台幣,蔡宜壽每1公斤只需要1000元的成本,一年能創造數十億至上兆元的產值;昨天吸引鴻海、長興化工等多家半導體與化工產業到場。

由於台灣這項技術確定領先全球,科技業界預期,10年內,台灣將會進入石墨烯時代,逐步取代半導體晶片。

蔡宜壽說,石墨烯的產業應用範圍涵蓋很廣,包括半導體、面板顯示器、太陽能電池、超高電容器;量產石墨烯對一般消費者最有利的是,能降低這些3C產品的成本,若運用在電池上,能提高續航力。

蔡宜壽以物理方法結合非化學液相剝離法,可大量製造單層石墨烯片,如利用每公斤約台幣1000元的材料成本,即可製造出目前市價每公克11萬元以上的石墨烯片。

換句話說,目前市場上1公克成本要11萬元的石墨烯,未來1公斤只11萬元,極具市場競爭力。


2 則留言: